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EVALUATION OF THE DRAG FORCE BY INTEGRATING 
THE ENERGY DISSIPATION RATE IN STOKES FLOW 

FOR 2D DOMAINS USING THE FEM 

RAM K. GANESH 
Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06268, U.S.A 

SUMMARY 
The total drag force on the surface of a body, which is the sum of the form drag and the skin friction drag in a 
2D domain, is numerically evaluated by integrating the energy dissipation rate in the whole domain for an 
incompressible Stokes fluid. The finite element method is used to calculate both the energy dissipation rate 
in the whole domain as well as the drag on the boundary of the body. The evaluation of the drag and the 
energy dissipation rate are post-processing operations which are carried out after the velocity field and the 
pressure field for the flow over a particular profile have been obtained. The results obtained for the flow over 
three different but constant area profiles -a circle, an ellipse and a cross-section of a prolate spheroid-with 
uniform inlet velocity are presented and it is shown that the total drag force times the velocity is equal to the 
total energy dissipation rate in the entire finite flow domain. Hence, by calculating the energy dissipation 
rate in the domain with unit velocity specified at the far-field boundary enclosing the domain, the drag force 
on the boundary of the body can be obtained. 

KEY WORDS Drag Energy dissipation rate Stokes law Finite domain Stress-hvergence 
Outflow boundary conditions 

1. INTRODUCTION 

In fluid dynamics, the fluid-dynamic resistance or the aerodynamic drag on a body in an external 
flow condition can be evaluated analytically, only for a few idealized cases,' such as flow over a 
sphere with uniform velocity at infinity and experimentally for a multitude of bodies2 It is now 
possible, with the advent of computing machinery and with the aid of a suitable numerical 
method such as the finite element method, to numerically solve for the velocity and pressure fields 
for the flow over an arbitrary body. Having solved for the velocity and pressure fields successfully, 
subroutine subprogrammes can be developed which can evaluate both the drag force on the 
boundary of the arbitrary body and the total energy dissipation rate for the entire domain. Two 
such subroutines were developed and used here to numerically verify Stokes' law in 2 0  and to use 
this as a means to numerically obtain the drag from the energy dissipation rate. It is worth 
pointing out that the minimum drag problem in Stokes flow, which is treated as an optimal 
control problem for a distributed parameter system governed by linear elliptic partial differential 
equation with the control as the geometric element of the system, actually uses the energy 
dissipation rate as the cost function to be minirni~ed.~ 

It is to be noted that for 2D Stokes flow over a circular profile there exists no solution that can 
satisfy no-slip on the profile yet can have finite velocity at inifinity. This is not the case, however 
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for 3D Stokes flow past a sphere. This situation is sometimes referred to as the ‘Stokes paradox’ in 
the l i terat~re.~ In this paper Stokes flow over three different profiles in 2D is solved numerically 
and the Stokes drag law in 2D is verified (despite the presence of the Stokes paradox); this result is 
subsequently used to obtain the drag on the profile. 

2. THEORETICAL BACKGROUND 

For a Stokes fluid the constitutive equation (stress, rate of strain relationship) is 

b i j =  - pd i j+2p  K j - i P V k k d i j ,  (1) 
where aij is the stress tensor, p is the dynamic viscosity, Kj is the rate of deformation tensor, &k is 
the rate of dilation tensor and p is the static pressure. If the fluid is assumed incompressible, then 
V, is zero and the constitutive equation becomes 

aij= - p 6 i j + 2 p K j ,  

v,=+( ui, j + uj,i). 
where 

The normal stress can be found by setting i=j: 

aii = - pdi i  + 2 p  V,, (summation not implied) 
- avi - - p + 2 p - ,  axi 

and the shear stress is given by 

In 2D Cartesian co-ordinates, the normal and shear stresses can be written as 

au 
ox,= - p + 2 p - ,  

ax 

au av 
axy = P (5 + %). 

(3) 

2.1. Drag 

Assuming the flow velocity U, to be in the x-direction (with the associated unit vector i), the 
component of the stress vector acting on a surface with unit normal v in the x-direction is given by 
the Cauchy formula’ 

T; = a,, 1 + ayx m, (7) 
where a,, and tsYx are the normal and shear stresses respectively. The direction cosines are 1 
and m. The above formula gives the drag at a point on a boundary. The total drag force D in the 
x-direction is obtained by integrating this expression along the boundary of the body: 
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2.2. Energy dissipation rate 

The energy dissipation function in 2D in tensor notation is given by 

In Cartesian co-ordinates this becomes’ 

The energy dissipation rate @ is the product of dynamic viscosity p and energy dissipation 
function 9. 

2.3. The connection between drag and energy dissipation rate 

The Stokes equation in stress-divergence form and the continuity equation are 

v an = vp, 
where 

and 

Expressing the momentum equation differently, we get 

v * (n -pf) = 0, 

where Z is the unit tensor. Integrating this over the entire domain SZ gives 

jfiV*(II-pf)df2=0. 

Using Gauss’s theorem, equation (14) becomes 

and r is the ‘finite’ boundary of the fluid domain. 
Now, let r, be the boundary of the body over which the drag is to be obtained and rinlc,, rtop, 

rsymm and rexit be the other boundaries of the finite domain (see Figure l), which together enclose 
a large volume of fluid. With this definition of the boundaries equation (15) becomes 

(a-fi)dT+ (a*fi)dT=O. (16) 1. s rinlcI LtnP s rsymm s red8 

(a-fi)dT+ ( a * f ) d T +  (a-P)dT+ 

The total reactive force F exerted by the body on the fluid is 

Therefore it follows from equations (16) and (17) that 

(18) s rSymm 
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u = v = 0.0 au 

Figure 1. Flow domain with boundary conditions 

This equation implies that since F is not zero (even when the boundaries are at infinity), the sum 
of the integral terms associated with them is not zero. It also provides an alternative way to 
evaluate the drag involving a finite domain boundary, which is normally chosen to be parallel to 
the global (x, y)-axes. The rate of work done by the boundary force on the fluid at a point is 
obtained by forming the dot product of that force with the velocity vector at the same point. 
Therefore the total rate of work done by the boundary forces is obtained by integrating the vector 
dot product at a point along the boundary. Thus the total rate of work W, done by the boundary 
forces comprising F is 

(a fi) - Usymm d r  - J (a * fi) * Uexit dr .  -J  rSymm rcxit 

Expanding the integrands to show the tractions and the direction cosines, we get 
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where the terms ‘zeroed out’ via the arrows will be discussed below. 
It may be noted that the boundary conditions in the Stokes formulation of Figure 1 do not 

represent the stresses physically, even though from a numerical standpoint, it does not make 
much difference as far as solving for the flow field is concerned. The numerical result obtained by 
employing the Stokes formulation and the associated outflow gradient velocity boundary 
conditions would be nearly the same (the small difference that results is due to a difference in 
truncation error) as that would be obtained by employing the stress-divergence formulation and 
the associated outflow stress boundary conditions;namely ox, = 0 and ayx = 0 (see Appendix I). 
Once the numerical flow field has been obtained by either method, the stress on any boundary can 
be calculated as a post-processing operation using the appropriate formula (such as equation (8)) 
which represents the stress (force) physically. 

Now, as a result of the boundary conditions and the orientations of the boundaries, 
equation (20) reduces to 

WF=- u,(-~~,,)dr- u,(o,,)dT s rinlel 1., 
=F*U,  
=U,D, (21) 

where ‘D’ is the x-component of the total reactive force F. Since ‘Drag’ is defined as the force 
component parallel to the relative approach velocity exerted on the body by the moving fluid, 
‘D’ here is the reaction to ‘Drag’ exerted by the body on the fluid. 

Next, by considering the total rate of work done by the boundary forces, it will be shown that 
an existing result in the literature is obtained in a different Galilean reference frame: 

(a. 6) * U, dT s rinlct 
(a.6).Ur dT= 

(a - 6) - Us,,, dT + (a * 6) * Uexit d r ,  (22) 

where the RHS is obtained by marking the boundaries as done before for the forces. Applying 
Gauss theorem, the LHS integral becomes 

s roxil 
+sr,op (a-iQ-U, dT+ 

where U is the velocity vector inside the domain at any point. 
If the body is assumed stationary, the velocity Uo on the boundary ro of the body is a null 

vector owing to the no-slip condition and hence the first integral term on the RHS of equa- 
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tion (22) vanishes. Therefore equation (23), by virtue of equations (22), (20) and (21). becomes 

V.(a.U) dR= - W, 

= -U,D. (24) 

(254 

(25b) 
Invoking conservation of mass, V U =0, the first term on the RHS of equation (25b) goes to zero. 
Now, subtracting equation (25b) from equation (25a), the LHS integral in equation (24) becomes 

From vector calculus we know the following: 

v * (n * U) = u . (V * n)+ n : vu, 
v * (Up) = p(V * U) + u * vp. 

jn V.(n.U-pU) dR= 

n:VU dR+ U*(V*ll-Vp) dQ. (26) =I I 
The second integral on the RHS is zero by virtue of equation (1 l), and the integrand in the first 

integral on the RHS can be shown to be the energy dissipation rate @ described in Section 2.2. 
Therefore from equations (24) and (26) it follows that 

-U,D= OdQ. (27) I 
This agrees with the results obtained by Bird et aL,' Panton6 and Semn.' The difference 

between the approach by these authors and the one given here is in the definition of the co- 
ordinate reference frame. Here the body is considered to be stationary while the stream flows past 
it, with the result that the velocity on the boundary of the body is zero and the velocity sufficiently 
far away from the body is U,. On the other hand, if the body is considered to be moving through 
the fluid slowly, the velocity on the boundary of the body is U, which is the translational velocity 
of the body, and the velocity sufficiently far away from the body in a quiescent state is zero. 

3. FIELD EQUATIONS 

The conservation of mass and conservation of momentum (the Stokes equation) for incom- 
pressible flow are 

au a v  
-+-=0, 
ax ay 

Defining the non-dimensionalized variables to be 
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the non-dimensionalized equations become (dropping the asterisks) 

au aU 
ax ay 
-+-=0, 

The non-dimensionalized equations look exactly like the dimensionalized ones. This implies 
that neither the viscous force nor the pressure force is dominant and the order of magnitude of 
each of them is about the same. In the case of the non-dimensionalized Navier-Stokes equations, 
the Reynolds number appears and the dominant physical phenomenon is governed by the 
magnitude of it, i.e. the higher the inertia force, the higher is the Reynolds number. If the Stokes 
equations are considered as a special case of the Navier-Stokes equations with the inertia term 
neglected, then the Reynolds number by its definition becomes zero and it is proper that it does 
not appear in the non-dimensionalized Stokes equations. 

These field equations are used to solve the flow field with the boundary conditions that do not 
represent the stresses physically (see Appendix I). The forces and the viscous dissipation will be 
obtained using the appropriate formulae, namely equations (8) and (10). 

4. NUMERICAL EXPERIMENTATION 

4.1. Discretization ofjlow domain 

The eight-noded isoparametric rectangular serendipity elements were chosen with mixed-order 
interpolation for velocity and pressure. The flow domain with the boundary conditions is shown 
in Figure 1. Since the flow is symmetric with respect to the mid-plane, only half the body and the 
associated flow domain is considered for solving the flow field. The inlet boundary is at a distance 
of five times the diameter of the semicircular body from the centre of the body and the exit 
boundary is at a distance of 10 times the diameter from the centre of the body. The third 
boundary parallel to the symmetry boundary is at a distance of 10 times the diameter from the 
centre of the body. This selection of boundaries simulates the far-field conditions fairly well.* 
Figure 2 shows the mesh discretization of the flow domain. As one can see, near the body the size 
of the elements is smaller to better resolve the gradients, and the size of the elements becomes 
gradually bigger in the outward radial direction until they merge with the checkerboard-type 
elements. 

4.2.1. Flow over a semicircular body. The non-dimensionalized drag force and the energy 
dissipation rate are evaluated through separate subroutine subprogrammes and are post- 
processing operations carried out after solving for the flow field. The zoom-in view of the mesh 
closer to the body i i  shown in Figure 3, the streamline contour plot for the flow is shown in 
Figure 4, the pressure contour plot is shown in Figure 5 and the energy dissipation rate contour 
plot is shown in Figure 6. An interesting observation here is that the maximum energy dissipation 
rate occurs not on the surface of the body but in front of the body and behind the body, and very 
little energy dissipation occurs in the rest of the domain. It is worth pointing out that since unit 
velocity is specified in the x-direction (this is also the direction of drag) at the inlet, the value of 
the non-dimensionalized energy dissipation rate calculated should be equal to the value of the 
non-dimensionalized drag. The non-dimensionalized drag force was calculated as 69.9 (using 
equation (8) or the x-component of equation (17)) and the total non-dimensionalized energy 
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Figure 2. Mesh discretization of flow domain 

Figure 3. Zoom-in view of semicircular body 

dissipation rate for the entire domain was calculated as 70.3 (using equation (10) for r$ on the 
RHS of equation (27)), i.e. a difference of 0.57%. This is in accordance with the Stokes drag law. 

4.2.2. Flow over a semi-ellipse. Next, the flow over an elliptic cross-section (with conical front 
and rear ends) with an area equal to that of the semicircle just considered was analysed. The 
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Figure 4. Streamlines for flow over a semicircle 

Figure 5. Pressure contours for flow over a semicircle 

565 

zoom-in view of the mesh closer to the body is shown in Figure 7 and the energy dissipation 
rate contour plot is shown in Figure8. The values of non-dimensionalized drag and non- 
dimensionalized energy dissipation rate were calculated to be 66.9 and 67.5 respectively, i.e. a 
difference of 0.9%. 
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Figure 6. Energy dissipation rate contours for semicircle 

4.2.3. Flow over a semi-prolate spheroidal cross-section. A prolate spheroidal cross-section was 
obtained by using the formula' 
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Figure 8. Energy dissipation rate contours for semi-ellipse 

where r denotes the distance from the centre, 8 is the co-altitude and 1 is a scaling coefficient for 
area adjustment. A numerical routine was used to evolve this profile by adjusting 1 in order to 
keep the area the same as that of the semicircle and semi-ellipse. The zoom-in view of the mesh 
closer to the body is shown in Figure9. The energy dissipation contour plot is shown in 
Figure 10. The non-dimensionalized drag force and non-dimensionalized energy dissipation rate 
were calculated to be 65.8 and 66.2 respectively, i.e. a difference of 0.6%. Bourotg found that the 
drag on this optimal-shaped (prolate spheroid, 3D) body is 0-95425 times the drag on the sphere 
of equal volume. Here the drag for the 2D cross-section of the same body is found to be 094 times 
the drag on the circular cross-section of equal area. 

4.3. General remarks 

As can be seen, the energy dissipation rate contours shown are not symmetric with respect to 
the body. This is because not only is the domain unsymmetric but the boundary conditions are as 
well, as shown in Figure 1. Truly symmetric boundary conditions would mean the exit boundary 
has the same constrained velocity boundary conditions as the inlet. The boundary parallel to the 
symmetry boundary has in either case constrained velocity boundary conditions applied. The two 
combinations, i.e. unsymmetric boundary conditions on a symmetric domain and symmetric 
boundary conditions on an unsymmetric domain, produced unsymmetric contours. The per- 
fectly symmetric contours shown in Figure 11 have been obtained only for a symmetric domain 
with symmetric boundary conditions, i.e. constrained velocities on the inlet, exit and the third 
boundary parallel to the symmetry boundary. It is worth pointing out that in all cases 
experimented, in spite of no symmetry (and with complete symmetry too), the Stokes drag law in 
2D, equation (27), holds good. There is yet another important aspect that is worth investigating. 
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Figure 9. Zoom-in view of semi-prolate spheroidal cross-sectional body 

Figure 10. Energy dissipation rate contours for semi-prolate spheroidal cross-section 

So far in the above experiments the body was held stationary and the fluid stream went past it. To 
see what happens when the body is moved in a quiescent fluid, the same experiments were 
conducted with the three aforementioned combinations of boundary conditions and domains and 
it was found that the energy dissipation rate contours, their magnitude and the drag were exactly 
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Figure 11.  Energy dissipation rate contours for semicircle with symmetric domain 

the same. However, the streamlines and the pressure contours were different. The relative motion 
and the drag are the same whether a body moves at uniform speed through a stagnant fluid or a 
large body of fluid streams past the body as in a wind tunnel. These two circumstances are 
equivalent. The change in viewing position of the stationary observer from one where he is 
attached to the body to one where he is attached to the flow is called a ‘Galilean trans- 
formation’. l o  

It was mentioned before that the maximum energy dissipation rate occurs in front of and 
behind the body in 2D domains. To see what is happening in a 3D flow, the energy dissipation 
rate was calculated for a sphere using the expressions given in spherical co-ordinates.’ It was 
found that the maximum occurs at equal distances both in front of and behind the sphere, 
confining the calculations to a plane. In the 2D domain for a circular cylinder also the maximum 
occurs at equal distances both in front of and behind the cylinder for a symmetric domain with 
symmetric boundary conditions. Since the 2D analysis differs from a 3D one, the distances are not 
the same despite observing similar trends. 

Finally, the energy dissipation rate contours were obtained for finite Reynolds numbers of 10 
and 20 and are shown in Figures 12 and 13 respectively. The energy dissipation rate contours are 
concentrated in the downstream wake region all the way up to the end of the domain. The global 
force and energy balances have been derived from first principles (our aim is to evaluate drag just 
as we did for Stokes flow) and it is observed that the difference between inertial flow and Stokes 
flow is the inclusion of the inertial force term in the force balance and the inertial power term in 
the energy balance. The inertial integral terms (see Appendix 11) have been evaluated numerically 
using the FEM and, by making use of the generalized global energy equation, an alternative way 
to evaluate the drag numerically is again obtained in non-linear flow. Note that one has to 
evaluate the energy dissipation rate integral in addition to the inertia integrals. In the special case 
of Stokes flow this global energy equation collapses to the Stokes drag law when the inertial 
integral term is neglected. 
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Figure 12. Energy dissipation rate contours for Re= 10 

Figure 13. Energy dissipation rate contours for Re=20 

5. CLOSURE 

A numerical method of evaluating the drag on a body from the total energy dissipation rate for a 
2D domain is developed using the finite element technique of numerical integration. Eight-noded 
serendipity elements with mixed-order interpolation for velocity components and pressure were 
used in the analysis. It is shown here that the drag on an arbitrarily shaped bady can be obtained 
by dividing the integrated energy dissipation rate in the entire flow domain by the uniform 
velocity at infinity. The flows over three different profiles-a semicircle, a semi-ellipse and a cross- 
section of a semi-prolate spheroid-were studied (the area remained the same). The subroutines 
developed were used in conjunction with the code developed by Taylor and Hughes.'' Since this 
software did not have a post-processor with graphic facilities, only numerical values were 
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obtained. Another code, FZDAP12 (courtesy of United Technologies Research Center), was used 
to study the flow over the same profiles and the results were compared and found to be in 
agreement. These results can also be construed as a numerical verification for the Stokes drag law 
in 2 0  and offer a justification for the use of the energy dissipation rate as a cost function in the 
minimum drag problem in Stokes flow. Another advantage of this verification method is that it 
offers an effective way to check the correctness of coding for the drag calculations. 
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APPENDIX I: STQKES VERSUS STRESS-DIVERGENCE FE FORMULATION OF 
STOKES EQUATIONS 

Stokes formulation 

The Stokes equations are 

The Galerkin procedure applied at node i of an isolated element for the Stokes equations 
results in 

Ni [p( v * VU' - v, p") ]  m = 0, 

Ni [.i( V * VU' - V, p")]  dR = 0, 1. 
Nf'(V, ue + V,, oe)  dR = 0, (35) 

where 

ue=CNi(x ,  y)ui, ve=CNi (x ,  y)vj, p e = C N r ( x ,  y)pi* (354 
Applying Gauss theorem and vector calculus, we arrive at the following result for the 
x-momentum equation: 

I 

Ni(pVue-ii-n,p') dr. (36) 
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In Cartesian form, 

The y-momentum equation can be derived in the same manner and the result is 

When the approximate equations (35a) are substituted in the integral equations, the matrix 
equations for node i result as 

where IN1 and INPI are the velocity and pressure interpolation matrices. For the continuity 
equation the matrix equation becomes 

Now the element matrix equation can be written by inspection as 

CK4I CK5I COI 
where 
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Stress-divergence formulation 

The Stokes equations in the stress-divergence form~lation'~ are 

where the stresses are related to the velocity components by 

(;; ::) au aU 
ax a Y  

ax=2p--, ay=2p-, T x y = p  -+- . 

The Galerkin procedure applied at node i of an isolated element gives for the momentum 
equations and the continuity equation 

If the momentum equations are integrated using Gauss theorem, we get 

where 

8, = ( a x - p ) n x  + zxyny, Cy  = ( ay - p ) n y  + zxynx. (534 
With the stress-divergence form of the momentum equations, the natural boundary conditions, 
i.e. the surface tractions, appear directly in the 'load' vector on the RHS. When the finite element 
approximation for the dependent variable is substituted in the above equation, the x-momentum 
matrix equation for node i results as 

The y-momentum matrix equation can be written similarly as 
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The matrix equation for node i for the continuity equation is 

From these equations, the element matrix equation can be written by inspection as 

where 

aNi 
K,, = - Joe ay NJ dQ, 

(59) 

and 8x and aY have been previously defined by equations (53c). 
Thus it can be seen from the two formulations that the matrices and the right-hand sides are 

different. However, the solutions will differ only by a small amount owing to the difference in 
truncation error between equations (42) and (57) and the fact that the flow is incompressible. In 
the Stokes formulation the 'load' vectors will contain only velocity gradients (corresponding to 
y = 0 in Appendix 11), which do not represent stresses. In the stress-divergence formulation, 
however, the 'load' vectors do represent the stresses physically and this is conducive to physical 
interpretation (corresponding to y = 1 in Appendix 11). Regardless of how the flow field is 
obtained (the flow field could have been obtained using the Stokes formulation), it is always 
possible to calculate the stresses on any boundary using the appropriate stress formulae which 
represent the stresses physically, as a post-processing operation. 
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APPENDIX 11: STRESS-DIVERGENCE, FORCES AND VISCOUS DISSIPATION 

The Navier-Stokes equation in the stress-divergence form is 

p u  vu = v * a(y), 
where 

= n ( y ) - p z ;  (684 
y = 0 gives the Navier-Stokes formulation and y = 1 gives the stress-divergence formulation. 
While these two forms are equivalent in the continuum, they are not (though very close) in the 
numerical approximations. The continuity equation is 

v . u = o .  (69) 
Multiplying the momentum equation by U and integrating over the domain R gives 

jfi pU-(U.VU)dR= U-(V.a(y))dR I =Ifi V.(a(y)-U)dR- 

where Z: VU= V - U = 0 and 
r is 

is the energy dissipation rate. The traction vector on the boundary 

F, = fi * ~ ( 7 ) .  (71) 

Thus, equation (70) becomes 

pU - (U - VU) dR + lfi @ ( y )  dR. (72) 

Splitting the boundary integral for each specific boundary and applying the boundary conditions 
of Figure 1, 

u= U ,  and u = O  on rinle,, 
u= U ,  and u = O  on rtop, 

a U  a0 

ay ax -+y-=O and u = O  onr,,,,,* 

au au au 
ax a y  ax 

-p+(l+y)p-=O and y-+-=O on rexit,* 

u=O and u = O  on To, the body boundary, 

The actual boundary conditions shown in Figure 1 are with y =O. However, only when y = 1 do these expressions 
represent the stresses; and for solving for the flow field refer to Appendix I. 
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we get 

F;U dT + F;U dT s rexiI 

n n 

= U r n - J  F,dT+U;J F,dT 
rinict rtop 

(73) 

Therefore, it follows from equations (72) and (73) that 

urn*[ rinlct F , d r + U r n * j  rtop pU-(U-VU)dR+jn  O(y)dR. (74) 

This equation is true only for y = 1, when F,, the force, and O, the energy dissipation rate, are true 
physical quantities. The total reactive force exerted by the body on the fluid is given by 

and 
U;F=U, J F,, dT 

ro 

= Urn D, (76) 
where D is the magnitude of the drag force parallel to the relative approach velocity U,. 
Integrating the Navier-Stokes equation over the domain R, 
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Forming the scalar product with Urn, 

Um*[np(U*VU)d!2=U,* sr F, dT 

s rimlet 
=U; F, dI?+U; Lo 

+urn.[ F, dI?+U; F, dr .  
rSymm 

(78) 

Using the boundary conditions and the orientations (the direction cosines) of the boundaries, the 
first term on the RHS becomes 

Urn-J F,dT=U, J Fx,dT 
ro ro 

=U;D (if y=l). (79) 

The fourth integral term on the RHS of equation (78) becomes 

= 0, 

and the fifth integral term on the RHS of equation (78) becomes 

0 

=O. 
By virtue of equations (74), (80) and (81), equation (78) becomes 

u-.ln p(U-VU)d!2=ln p U . ( U . ~ U ) d R + l n S ( y ) d n + U ,  lro F,,dT. 

U rn jro Fx , dT = p ( Urn - LJ) - (U - VU) dR - sn @( y ) dR. 

(82) 

Rearranging, 

(83) 

Therefore we can write, using equation (76), 
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where 
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If y = 1, the above expression is zero and equation (84) becomes 

U ,  D = p(U, - U) - (U - VU) dR - I2 a(?) do. I ( 8 5 )  

Only when y = 1 do both a( y )  and F, represent the viscous dissipation and the force respectively. 
Equation (85) can be used to evaluate the drag in the steady non-linear flow over a body. Note 
that the magnitude of the drag force, which is a boundary quantity, is evaluated in terms of 
domain integrals. Equation (85) collapses to the one derived for Stokes flow if the inertial integral 
term is neglected. 
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